Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se2 surfaces

Identifieur interne : 000156 ( Main/Repository ); précédent : 000155; suivant : 000157

Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se2 surfaces

Auteurs : RBID : Pascal:14-0027492

Descripteurs français

English descriptors

Abstract

Conducting Probe AFM. CP-AFM, was used to follow how chemical etching, oxidation, and sulfurization affect the surface nanoscale electrical characteristics of polycrystalline Cu(In,Ga)Se2 (CIGS) thin films. Band bending at grain boundaries (GBs) on the surface was studied and analyzed by CP-AFM - measured photocurrents. We find that both oxidation and sulfurization can passivate the GBs of the CIGS films; oxidation increases n-type band bending, which impedes the transport of photogenerated electrons, while sulfurization increases p-type band bending at GBs, which helps this transport. Differences in effects between surface terminations by sulfide, selenide and oxide were analyzed. The effects of these treatments on the electrical activity of the GBs of the films, as well as the importance of the use of chemical bath deposition of the CdS buffer, are explained within a defect surface chemistry model.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0027492

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se
<sub>2</sub>
surfaces</title>
<author>
<name>WENJIE LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials and Interfaces, Weizmann Institute of Science</s1>
<s2>Rehovot</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Sidney R" uniqKey="Cohen S">Sidney R. Cohen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical Research Support, Weizmann Institute of Science</s1>
<s2>Rehovot</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahen, David" uniqKey="Cahen D">David Cahen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials and Interfaces, Weizmann Institute of Science</s1>
<s2>Rehovot</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0027492</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0027492 INIST</idno>
<idno type="RBID">Pascal:14-0027492</idno>
<idno type="wicri:Area/Main/Corpus">000251</idno>
<idno type="wicri:Area/Main/Repository">000156</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Buffer system</term>
<term>Cadmium sulfide</term>
<term>Chemical bath deposition</term>
<term>Chemical etching</term>
<term>Chemical treatment</term>
<term>Copper selenides</term>
<term>Electrical activity</term>
<term>Electrical characteristic</term>
<term>Gallium selenides</term>
<term>Grain boundary</term>
<term>Indium selenides</term>
<term>Oxidation</term>
<term>Photoelectric current</term>
<term>Polycrystal</term>
<term>Quaternary compound</term>
<term>Selenium addition</term>
<term>Solar cell</term>
<term>Sulfurization</term>
<term>Surface chemistry</term>
<term>Surface treatment</term>
<term>Termination</term>
<term>Thin film</term>
<term>n type semiconductor</term>
<term>p type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traitement chimique</term>
<term>Caractéristique électrique</term>
<term>Polycristal</term>
<term>Microscopie force atomique</term>
<term>Attaque chimique</term>
<term>Oxydation</term>
<term>Sulfuration</term>
<term>Joint grain</term>
<term>Courant photoélectrique</term>
<term>Semiconducteur type p</term>
<term>Borne électrique</term>
<term>Activité électrique</term>
<term>Dépôt bain chimique</term>
<term>Système tampon</term>
<term>Chimie surface</term>
<term>Cellule solaire</term>
<term>Traitement surface</term>
<term>Addition sélénium</term>
<term>Couche mince</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Semiconducteur type n</term>
<term>Sulfure de cadmium</term>
<term>Cu(In,Ga)Se2</term>
<term>CdS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Conducting Probe AFM. CP-AFM, was used to follow how chemical etching, oxidation, and sulfurization affect the surface nanoscale electrical characteristics of polycrystalline Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin films. Band bending at grain boundaries (GBs) on the surface was studied and analyzed by CP-AFM - measured photocurrents. We find that both oxidation and sulfurization can passivate the GBs of the CIGS films; oxidation increases n-type band bending, which impedes the transport of photogenerated electrons, while sulfurization increases p-type band bending at GBs, which helps this transport. Differences in effects between surface terminations by sulfide, selenide and oxide were analyzed. The effects of these treatments on the electrical activity of the GBs of the films, as well as the importance of the use of chemical bath deposition of the CdS buffer, are explained within a defect surface chemistry model.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>120</s2>
</fA05>
<fA06>
<s3>p. b</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se
<sub>2</sub>
surfaces</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WENJIE LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COHEN (Sidney R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CAHEN (David)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials and Interfaces, Weizmann Institute of Science</s1>
<s2>Rehovot</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemical Research Support, Weizmann Institute of Science</s1>
<s2>Rehovot</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>500-505</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000508232450070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0027492</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Conducting Probe AFM. CP-AFM, was used to follow how chemical etching, oxidation, and sulfurization affect the surface nanoscale electrical characteristics of polycrystalline Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin films. Band bending at grain boundaries (GBs) on the surface was studied and analyzed by CP-AFM - measured photocurrents. We find that both oxidation and sulfurization can passivate the GBs of the CIGS films; oxidation increases n-type band bending, which impedes the transport of photogenerated electrons, while sulfurization increases p-type band bending at GBs, which helps this transport. Differences in effects between surface terminations by sulfide, selenide and oxide were analyzed. The effects of these treatments on the electrical activity of the GBs of the films, as well as the importance of the use of chemical bath deposition of the CdS buffer, are explained within a defect surface chemistry model.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Traitement chimique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Chemical treatment</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tratamiento químico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Attaque chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical etching</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ataque químico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sulfuration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Sulfurization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sulfurización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Joint grain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Grain boundary</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Limite grano</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>p type semiconductor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Semiconductor tipo p</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Borne électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Termination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Borne eléctrico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Activité électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electrical activity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Actividad eléctrica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Chimie surface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Surface chemistry</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Traitement surface</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Surface treatment</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Tratamiento superficie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Addition sélénium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Selenium addition</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Adición selenio</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0027492
   |texte=   Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se2 surfaces
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024